MERS: Statistical Test Generation for Side-Channel
Analysis based Trojan Detection

Yuanwen Huang
Department of Computer and
Information Science and
Engineering,
University of Florida,
Florida 32611, USA
yuanwenhuang@ufl.edu

ABSTRACT

Hardware Trojan detection has emerged as a critical chal-
lenge to ensure security and trustworthiness of integrated
circuits. A vast majority of research efforts in this area has
utilized side-channel analysis for Trojan detection. Func-
tional test generation for logic testing is a promising al-
ternative but it may not be helpful if a Trojan cannot be
fully activated or the Trojan effect cannot be propagated
to the observable outputs. Side-channel analysis, on the
other hand, can achieve significantly higher detection cover-
age for Trojans of all types/sizes, since it does not require
activation/propagation of an unknown Trojan. However,
they have often limited effectiveness due to poor detection
sensitivity under large process variations and small Trojan
footprint in side-channel signature. In this paper, we address
this critical problem through a novel side-channel-aware test
generation approach, based on a concept of Multiple Exci-
tation of Rare Switching (MERS), that can significantly in-
crease Trojan detection sensitivity. The paper makes several
important contributions: i) it presents in detail the statisti-
cal test generation method, which can generate high-quality
testset for creating high relative activity in arbitrary Tro-
jan instances; ii) it analyzes the effectiveness of generated
testset in terms of Trojan coverage; and iii) it describes two
judicious reordering methods can further tune the testset
and greatly improve the side channel sensitivity. Simulation
results demonstrate that the tests generated by MERS can
significantly increase the Trojans sensitivity, thereby making
Trojan detection effective using side-channel analysis.

CCS Concepts

eHardware — Hardware test; Very large scale integra-
tion design; Hardware validation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2976749.2978396

Swarup Bhunia
Department of Electrical and
Computer Engineering,
University of Florida,
Florida 32611, USA
swarup@ece.ufl.edu

Prabhat Mishra
Department of Computer and
Information Science and
Engineering,
University of Florida,
Florida 32611, USA
prabhat@ufl.edu

Keywords

Hardware Security; Hardware Trojan Detection; Side-Channel
Analysis; Statistical Test Generation.

1. INTRODUCTION

Hardware Trojan attacks relate to malicious modifications
in the design of Integrated Circuits (ICs) at different stages
of the design or fabrication process [1]. An adversary can
introduce these modifications in a design in order to cause
disruption in normal functional behavior and/or to leak se-
cret information from a chip during operation in field. With
the emerging trend of increased globalization of IC design
and fabrication process and consequently reduced control on
these steps by a trusted chip manufacturer, ICs are becom-
ing increasingly vulnerable to these attacks. Since the threat
of hardware Trojan in the form of a malicious implant in a
design came into light about a decade ago through an US
Department of Defense announcement [2], it has triggered
wide array of research activities in threat analysis as well
as design/validation solutions to evaluate this threat and
protect against it. Hardware Trojan attacks are also being
increasingly recognized in the semiconductor industry as a
serious security concern.

A Trojan is expected to be covert and difficult to detect,
i.e. an intelligent adversary will likely insert a Trojan circuit
in a way that evades detection during post-manufacturing
functional/parametric testing, but manifests itself during
long hour of in-field operation. This can be achieved by
externally triggering its operation or by making it depen-
dent on rare circuit conditions inside an IC. The condition
of Trojan activation as commonly referred to as trigger con-
dition, which can be purely combinational or sequential, i.e.
related to the clock or a sequence of rare events in the state
elements (e.g. flip-flops of registers). The internal circuit
nodes affected by a Trojan activation are referred to as pay-
load of a Trojan. Fig. 1 shows some example Trojan circuits
including a combinational and a sequential Trojan. For ex-
ample, a Trojan circuit could be triggered only when a data
bus attains a unique rare value or when the number of times
it attains the rare value equals to a particular count. The
malicious effects of Trojan payloads can range from passive,
such as leakage of secret information to altering the original
functionality of the chip in a critical or destructive fashion.

Protection against hardware Trojan attacks can be ac-
complished in two broad ways: (1) design-for-security (DfS)
techniques that make Trojan insertion difficult or make a

B (rare 1)

(b) Sequential Trojan

Figure 1: Example of a combinational and a sequential Tro-
jan with triggers from two rare internal nodes A and B.

Trojan easily detectable through post-silicon testing; and
(2) manufacturing test approaches that aim at detecting an
arbitrary Trojan by observing its effect into a circuit’s op-
erational behavior. The first class of techniques, primarily
relies on different types of hardening approaches - e.g. in-
sertion of dummy cells into empty spaces in a circuit layout;
or key-based obfuscation of a design that make malicious
alteration by an adversary provably hard. DfS techniques,
however, come at the cost of additional design, verification,
and test time, as well as additional design overhead. For
example, key-based obfuscation, even though is capable of
providing high level of robustness against Trojan attacks,
come at a cost of 10% or more area overhead [3]. More
importantly, design solutions, however, only work for new
designs and not legacy designs, and hence has limited ap-
plicability. Hence, efficient test/validation approaches that
can provide high level of confidence regarding IC trustwor-
thiness in presence of Trojan threat provides an attractive
solution to the IC manufacturers.

Existing test solutions for hardware Trojan detection can
be broadly classified into: 1) logic testing and 2) side-channel
analysis approaches. In logic testing approach, directed
structural or functional tests are generated to activate rare
events in a circuit and propagate the malicious effect of a
Trojan in logic values to primary outputs. Such approaches
are known to be more effective in detecting ultra-small Tro-
jans (typically a few gates in size) reliably under large pro-
cess variations. The main challenge with logic testing ap-
proaches, however, is the difficulty to trigger a Trojan and
observe its effect, particularly the complex sequential Tro-
jans, and the inordinately large number of possible Trojan
instances an adversary can exploit. On the other hand, side-
channel analysis approaches depend on measurement and
analysis of physical “side-channel” parameters like power sig-
nature or path delay of an IC in order to identify a structural
change in the design. Such approaches have the advantage
that they do not require triggering a malicious change and
observing its impact at the primary output. Side-channel
analysis (SCA), primarily based on supply current, has been
extensively investigated by large number of research groups

and various solutions to increase the signal-to-noise (SNR)
have been proposed. A disadvantage of SCA arises from the
large process variations (e.g. 20X leakage power and 30%
delay variations in 180nm technology [4]) which can poten-
tially mask the minute effect of a Trojan in the measured
side-channel parameter.

Even though SCA has shown tremendous promise in de-
tecting unknown Trojans of various types during manufac-
turing test of an IC, a major issue with SCA is the low
detection sensitivity. For a billion transistor modern IC, a
Trojan with just a few logic gates would have a minuscule
side-channel foot-print, which will require a measurement
resolution and dynamic range in an instrument, that is hard
to achieve. For example, a delta shift in several nano or
pico amp of transient current in ten’s of amp of background
current, would be practically infeasible to detect even with
most precise and expensive instrument. The problem is ag-
gravated by orders of magnitude due to presence of both
systematic and random variations in device parameters due
to intrinsic process variations.

A solution to the sensitivity problem can be achieved by
judicious test generation approach that aims at maximizing
the sensitivity for an arbitrary Trojan in unknown circuit
location. Through the remainder of the paper, we focus on
transient current or power as our side-channel parameter
of interest. Some of the concepts however can be applied
to other side-channel parameters. To maximize sensitivity
of a given Trojan, one needs to amplify activity inside the
Trojan circuit and simultaneously minimize the background
activity (i.e. activity in the original circuit). However, since
the number of possible Trojan instances in a design can be
inordinately large, a deterministic test generation method
similar to conventional stuck-at fault test generation, cannot
work. To address this issue, in this paper, we present a novel
test generation framework that can maximize the detection
sensitivity for an arbitrary Trojan.

1.1 Main Idea and Our Contributions

The goal of our work is to generate efficient test vectors
for Trojan detection using side-channel analysis. Functional
test can detect Trojan effect only when it is fully triggered
and its payload is propagated to the primary outputs, which
makes functional test infeasible to detect Trojans in most
cases. Side channel analysis can detect well-hidden Trojans
by inspecting the side channel signals, for example, transient
current in the circuit. If the switching effect introduced by
the Trojan circuit is distinguishable, in the presence of pro-
cess variation, the Trojan will get identified. In this paper
we propose a comprehensive test generation framework to
assist side channel analysis for hardware Trojan detection.

We use the relative switching of the Trojan with respect
to the whole circuit to indicate the sensitivity of the side
channel signals. The statistical test patterns can maximize
relative Trojan detection sensitivity under any process noise.
Process variation is not expected to affect our side channel
sensitivity computation since we consider switching activity
instead of actual current or power values. The assumptions
we have made are similar to the state-of-the-art side-channel
analysis based Trojan detection approaches. The proposed
method can be combined with any existing process calibra-
tion approaches (such as one in [21] or [22]) to minimize the
false positives/negatives and maximize Trojan coverage.

To make side channel analysis successful in detecting Tro-

jans, we need to: (1) maximize the switching activity in the
Trojan circuit; (2) minimize the switching activity in other
parts of the circuit so that the relative switching effect is
maximized. The main idea of this paper is to generate high
quality test patterns which can achieve these two goals and
increase the sensitivity of side channel analysis. The follow-
ing are the major contributions of this paper:

1. It presents, for the first time in our knowledge, a sta-
tistical test generation approach for increasing side-
channel analysis based Trojan detection sensitivity. The
proposed approach can be applicable to any transient
current based Trojan detection approach.

2. The methodology, referred to as MERS (Multiple Ex-
citation of Rare Switching) for statistical test gener-
ation, is shown to derive a compact testset that can
trigger each of the rare nodes to satisfy rare switching
for multiple times. MERS can have a good coverage of
all rare nodes and greatly increase the switching effect
inside arbitrary Trojans in unknown locations of the
circuit.

3. Two reordering methods are proposed to reduce the
total switching of the circuit and thus further increase
the sensitivity of side channel analysis. First, a simple
and low-cost method based on Hamming distance of
input vector pairs is introduced to reorder the tests.
Next, we develop another simulation based method to
more effectively balance switching in rare nodes and
the total switching.

Our side-channel based approach is targeted towards de-
tecting unknown Trojans, which means it will remain equally

effective even if the adversary is aware of the proposed method.

This is due to the following two reasons: (1) the proposed
test generation method is statistical in nature - so, unlike
conventional deterministic test approaches, it maximizes the
activation probability for arbitrary Trojans designed with
any trigger condition; and (2) it maximizes the detection
sensitivity of unknown Trojans, however “stealthy”, by am-
plifying its effect in side-channel signature. Our simulation
platform inserts large number of arbitrary Trojans in a de-
sign and shows that the proposed approach is highly effective
in detecting them.

The rest of the paper is organized as follows. Section 2
provides overview of hardware Trojan attacks and the broad
classes of Trojan detection approaches. Section 3 presents
related work in side channel analysis and functional test gen-
eration for Trojan detection. Section 4 presents the MERS
test generation algorithm and the test reordering algorithms
to improve sensitivity of side channel analysis. Section 5 de-
scribes the experiment setup and presents results on a set
of ISCAS benchmarks with detailed analysis. Section 6 con-
cludes the paper.

2. BACKGROUND AND PRELIMINARY

In this section we briefly describe the growing threat of
hardware Trojan attacks and discuss two broad classes of
Trojan detection approaches.

2.1 Hardware Trojan Attacks

Malicious modification of IC at different stages of its life
cycle, known as hardware Trojan attacks, is an impending

threat in the electronics industry. Increased reliance on third
party hardware intellectual property (IP) blocks and design
automation tools in the IC design flow as well as outsourc-
ing of design/fabrication steps to external parties due to
economic reasons are rapidly increasing the vulnerability to
Trojan attacks. An adversary can mount such an attack
with an objective to cause in-field operational failure or to
leak secret information from inside a chip - e.g. the key in
a cryptographic IC. Recent investigations have shown that
an intelligent adversary can insert tiny Trojans of numer-
ous forms and sizes into a million-transistor design, which
can easily evade conventional manufacturing test that is not
designed to isolate the stealthy Trojan attacks.

Depending on their mode of operation and structure, hard-
ware Trojans can be grouped into several broad classes. A
common classification of Trojans [1][7] is based on the activa-
tion mechanism (referred as Trojan trigger) and the effect on
the circuit functionality (referred as Trojan payload). Tro-
jans can be both combinationally and sequentially triggered.
Typically, an adversary would choose an extremely rare acti-
vation condition so that it is highly unlikely for the Trojan to
trigger during conventional manufacturing test. Sequentially
triggered Trojans (the so-called “time bombs”), on the other
hand, are activated by the occurrence of a sequence, or after
a period of continuous operation. The simplest sequential
Trojans are synchronous stand-alone counters, which trigger
a malfunction on reaching a particular count. The trigger
mechanism can also be analog in nature, whereby on-chip
sensors are used to trigger a malfunction. For example, the
Trojan gets activated when the temperature of a particular
region of the IC exceeds a threshold [1]. Trojans can also be
classified based on their payload mechanisms into two main
classes - digital and analog. Digital payload Trojans can ei-
ther affect the logic values at chosen internal payload nodes,
or can modify the contents of memory locations. Analog pay-
load Trojans, on the other hand, affect circuit parameters
such as performance, power and noise margin.

2.2 Trojan Detection Approaches

Detecting hardware Trojan instances in an IC before it
is used in an electronic system is of paramount importance.
Even though DfS approaches that aim at hardening a design
with respect to Trojan insertion or facilitating Trojan detec-
tion during manufacturing test are being actively researched
[3], they have several major limitations: (1) they cannot
provide provably robust defense against all forms of Trojan
attacks; (2) they often incur unacceptable design overhead;
and (3) they cannot be applied to legacy designs, which is
difficult to change for incorporating DS features. Hence, a
Trojan detection step for trust validation during post-silicon
manufacturing test is becoming crucial to isolate ICs affected
with Trojans.

It is worth noting that conventional post-manufacturing
test using functional / structural test patterns performs poorly
to reliably detect hardware Trojans. This is because man-
ufacturing test generation and application aim at detect-
ing manufacturing defects with well-characterized behavior
and model that cause deviation from functional or paramet-
ric specifications. They do not aim at detecting additional
functionalities incorporated by a Trojan or deviation in cir-
cuit behavior triggered by rare events. Hence, conventional
testing methods typically provide poor Trojan detection ca-
pability, as observed by researchers [5]. Destructive test-

ing of a chip by de-packaging, de-metallization and micro-
photography based reverse-engineering is highly expensive
(in time and cost) and not a feasible solution because an
attacker may selectively insert Trojan into a small subset of
the manufactured ICs [8].

Existing Trojan detection approaches fall into two major
classes: (a)functional testing based, and (b) side-channel
analysis based. Most Trojan detection techniques proposed
in the literature are characterized by their efficiency in de-
tecting particular classes of Trojan. These approaches typi-
cally fail to provide high confidence in detecting an inserted
Trojan of arbitrary operating mode. The enormous vari-
ety of Trojans and the inordinately large Trojan population
that might be present in a circuit makes it difficult to de-
vise deterministic test patterns for them. The functional
testing based Trojan detection approaches [5] aim to trig-
ger rare events at internal nodes in the circuit to activate
Trojans and then compare the obtained output logic val-
ues of the circuit with the expected golden values of the IC.
On the other hand, the side-channel analysis based Trojan
detection approaches [9][12][19] are based on observing the
effect of an inserted Trojan on a physical parameter such
as circuit transient current, power consumption or path de-
lay, and then comparing it with the pre-characterized golden
value for a Trojan-free IC (or a model of the IC). If the ob-
served value of the measured parameter differs by more than
a threshold from the golden value, the presence of a Trojan
is suspected. Both classes of Trojan detection techniques
have their relative pros and cons. The main challenge for
functional testing based Trojan detection approaches is the
enormously large Trojan design space, which makes com-
plete enumeration and test generation for all feasible Trojan
instances in a moderately-sized circuit computationally in-
feasible. This makes it extremely difficult to guarantee that
an arbitrary inserted Trojan would be activated, cause cir-
cuit malfunction and thus get detected during the test ap-
plication phase. On the other hand, the advantage of the
side-channel analysis based approaches lies in the fact that
even if the Trojan circuit does not cause observable mal-
function in the circuit during test, the presence of the extra
circuitry can be reflected in the measured side-channel pa-
rameter. Further, such techniques are suitable for arbitrarily
complex Trojans because they do not need to make any as-
sumption about the mode of operation of an inserted Trojan.
However, the main challenges associated with side-channel
analysis are large process variation and design marginality
induced effects in modern nanometer technologies [1], and
measurement noise, which can mask the effect of an inserted
Trojan circuit, especially for small Trojans.

3. RELATED WORK

The underlying assumption for Trojan insertion is that
an adversary is fully aware of the design functionality and
therefore can hide the Trojan in a hard-to-find place. The
adversary may use very rare internal transitions to trigger
the Trojan, and it may be impossible to detect (due to ex-
ponential state space) during traditional testing and valida-
tion. One way to address this issue is to obfuscate [3] or
encrypt [14] the design such that the adversary cannot fig-
ure out the actual functionality and therefore cannot insert
the Trojan in a covert manner. Unfortunately, smart at-
tacker can effectively bypass both obfuscation [15] and en-
cryption [16] methods. A promising direction is to develop

efficient techniques for hardware Trojan detection. Prior re-
search on Trojan detection can be classified into two broad
categories: side-channel analysis and functional test gener-
ation. A vast majority of the Trojan detection approaches
are based on analysis of side-channel signatures such as de-
lay, transient and leakage power [8][9][10][11][12][13]. The
basic idea is to find a side-channel signature (if the Trojan
activated) that is different from the normal signature. Un-
fortunately, these approaches are susceptible to thermal and
process variations. Therefore, it would be difficult to detect
small combinational Trojans.

One promising direction to overcome process variation is
to generate functional test patterns that are likely to acti-
vate the Trojans. These approaches rely on the fact that
an adversary will choose a trigger condition for the Trojan
using a set of rare nodes. Various approaches tried to max-
imize the rare node activation to increase the likelihood of
activating Trojans. Some approaches [18][19] use the design-
for-test (DFT) infrastructure (such as additional scan flip-
flop) to increase the transition probability of low-transition
nets. MERO [5] takes the advantage of N-detect test [20] to
maximize the trigger coverage by activating the rare nodes.
The test generation ensures that each of the nodes gets ac-
tivated to their rare values for at least N times. They have
shown that if N is sufficiently large, a Trojan with trigger
conditions from these rare nodes, will be highly likely to be
activated by the generated test set. Saha et al. [6] improves
the test pattern generation of MERO by using genetic algo-
rithm and boolean satisfiability, which could more effectively
propagate the payload of possible Trojan candidates. How-
ever, these functional test generation approaches are not de-
signed for side-channel analysis. Direct application of these
test generation approaches for side-channel analysis would
not be best for improving side-channel sensitivity for Trojan
detection. The objective of increasing side-channel sensitiv-
ity is very different from the ones in both MERO as well
as its enhanced version by Saha et al. Unlike these existing
approaches, a side-channel aware test generation approach,
as proposed in our paper, requires maximizing switching ac-
tivity in an unknown Trojan circuit while minimizing the
background switching.

Instead of aiming on finding a vector to activate a set
of rare nodes, we focus on creating a set of vector pairs to
maximize switching in rare nodes. Our algorithm creates
multiple excitation of rare switching which is important in
making side-channel based Trojan detection effective. More-
over, we also try to simultaneously minimize the background
switching to maximize the relative switching.

4. MERS METHODOLOGY

In this section, we present the proposed methodology for
side-channel aware test generation in detail. The methodol-
ogy is based on the concept of statistically maximizing the
switching activity in all the rarely triggered circuit nodes.

The effectiveness of a test pattern for side channel analy-
sis is measured in two ways: (1) the ability to create most
switching inside a Trojan or to activate a Trojan; (2) the
ability to create high Trojan-to-circuit switching. We mea-
sure DeltaSwitch as the switching introduced by the Tro-
jan, which is the difference of number of switches between
the golden circuit and the Trojan-infected circuit. We mea-
sure RelativeSwitch as the ratio of DeltaSwitch to the to-
tal number of switches (TotalSwitch) in the golden circuit.

(a) A 4-trigger Trojan

(b) An 8-trigger Trojan

Figure 2: Trojans with rare nodes as trigger conditions. The
4-trigger Trojan will only be activated by the rare combina-
tion 1011 and the 8-trigger Trojan will only be activated by
the rare combination 10110011.

An effective test vector should be capable of creating large
DeltaSwitch, and more importantly it should create large
RelativeSwitch, as it is directly related to the sensitivity for
side channel analysis.

RelativeSwitch = DeltaSwitch/TotalSwitch (1)

The major challenges for generating high-quality test vectors
are as follows: (1) we are not sure of the location where the
Trojan is inserted in the circuit; (2) the Trojan is stealthy
and has very low activity when it is not triggered. These
characteristics have made random tests not effective in mag-
nifying the side channel signal for Trojan detection. Fig. 2
shows two example Trojan instances. The 4-trigger Trojan
will only be activated by the rare combination 1011 and the
8-trigger Trojan will only be activated by the rare combina-
tion 10110011. If the possibility of each rare node to take its
rare value is 0.1, the probability to have these two Trojans
fully triggered is 10™* and 10™%, respectively.

Our test generation approach (MERS) is based on creat-
ing a set of test vectors for each candidate rare node indi-
vidually to have rare switching multiple (at least V) times.
Our approach utilizes the principle of N-detect [20] tests to
increase the likelihood of partially or fully activating a Tro-
jan. MERS can generate a high-quality testset for these rare
nodes individually to have rare switching for N times. If N
is sufficiently large, a Trojan with triggering conditions from
these rare nodes is likely to have high switching activity even
though it might not be fully activated.

4.1 Multiple Excitation of Rare Switching

The basic idea of MERS is that if we can make a rare node
switch NV times where N is sufficiently large, it significantly

Algorithm 1: MULTIPLE EXCITATION OF RARE
SwiTCHING (MERS)

Input: Circuit netlist, rare switching requirement (N),
list of rare nodes (R = {r1,72,...,Tm}),
list of random patterns (V = {v1,v2,...,vn})
Output: MERS test patterns (T)

// simulate and sort random vectors
1: for each random vector v in V do
2: Simulate the circuit with the input vector v
Count the number of nodes (Rv) in R with their

rare values satisfied
end

: Sort vectors in V' in descending order of Ry
. for each node r; in R do

Set its rare switching counter (S;) to 0
end

w

® N> a R

// mutate vector to find improved vector pairs
9: Initialize previous vector ¢, as a vector of all 0’s
10: for each vector v; in V do

11: Simulate the circuit with vector pair (¢,,v;)

12: Count the number of rare switches (Rs)

13: Set v} = v;

14: for each bit in v; do

15: Mutate the bit and re-simulate the circuit with
vector pair (tp, v})

16: Count the number of rare switches (RY)

17: if Rs > Rs then

18: Accept the mutation to v]

19: end

20: end

21: Update S; for all nodes in R due to vector vj

22: if v; increases S; for at least one rare node then

23: Add the mutated vector vj to T'

24: Set t, = v}

25: end

26: if S; > N for all nodes in R then

27: Break

28: end

20: end

30: return MERS test patterns T

improves the chance of switching in a Trojan associated with
that rare node. The rare switching in our algorithm spe-
cially refers to a rare node switching from its non-rare value
to its rare value. The reason to choose this criteria is two-
fold: (1) it is more difficult to switch from non-rare to rare
value than from rare to non-rare value; (2) it defines the
switching between the previous vector and the current vec-
tor, and it usually helps to create an extra switching between
the current vector and the next vector. This will increase the
probability of switching of a Trojan which has rare nodes as
its trigger conditions. Our approach is also applicable to se-
quential Trojans, which requires the rare condition to occur
a certain number of times to be fully triggered.

Algorithm 1 shows the steps of MERS to generate high
quality tests for creating switching in rare nodes, so as to
assist side channel analysis for hardware Trojan detection.
The algorithm is fed with the golden circuit netlist, the list
of random test patterns (V) and a list of rare nodes (R)
(which is obtained by random vector based circuit simulation

beforehand). First, we simulate each random pattern and
count the number of rare nodes (Ry) that take their rare
values. We sort the random patterns in descending order
of Ry, which means that the vector with ability to activate
the most number of rare nodes goes first. Next, we initialize
the rare switching counter S; for each rare node to 0. In
the next step, we mutate vectors from the random pattern
set to generate high quality tests. We mutate the current
vector one bit at a time and we accept the mutated bit only
if the mutated vector can increase the number of nodes to
have rare switching. In this step, only those rare nodes with
Rs < N are considered. The mutation process repeats until
each rare node has achieved at least IV rare switches. The
output of the test generation process is a compact set that
improves the switching capability in rare nodes, compared
to random patterns. The complexity of the algorithm is
O(nxm), where n is the total number of test vectors mutated
during the process, and m is the number of bits in primary
inputs. The runtime to generate MERS tests can be found
in Table 1.

The testset generated by MERS is expected to be very
effective in increasing the likelihood of rare nodes to switch
and thus increasing the activities in Trojans. In other words,
MERS testset is capable of maximizing the DeltaSwitch (the
numerator in Equation 1). MERS testset is already a very
high quality testset in terms of criteria for DeltaSwitch.
However, MERS testset also creates more switching in other
parts of the circuit, when it is making efforts to switch rare
nodes. This characteristic of increased TotalSwitch would
be further illustrated in the Section 5. In order to maximize
relative switching, we need to have TotalSwitch in control
as well. In the following subsections, we propose two meth-
ods to tune the MERS testset, so that it can: (1) still be
effective for DeltaSwitch, (2) reduce TotalSwitch and im-
prove the effectiveness for RelativeSwitch. The first method
is a heuristic approach based on hamming distance of test
vectors, which can reduce the total switching. The second
one is simulation based, in which we try to balance the rare
switching and the total switching while we explore all the
candidate vectors.

4.2 Hamming Distance based Reordering

If two consecutive input vectors have the same values in
most bits, it is very possible that the internal nodes will
also have a lot of values in common. A simple heuristic to
reduce total switching in circuit is to have similar input vec-
tors. We use the Hamming distance between two vectors to
represent the similarity. Algorithm 2 shows our approach to
reorder the testset by Hamming distance. The algorithm is
a greedy approach to explore all candidate vectors and take
the best one in terms of Hamming distance. We first check
the Hamming distances between the previous vector and all
the remaining vectors, then we select the vector which has
the minimum Hamming distance as the next vector. The
time complexity of Algorithm 2 is O(n?), where n is the
testset size. Fortunately, it is of low cost to calculate the
Hamming distance between two input vectors. The actual
run-time is very short because n (number of test patterns
produced by MERS) is small, in the order of tens of thou-
sands.

Algorithm 2: TESTS REORDERING BY HAMMING Dis-
TANCE (MERS-h)

Input: List of Test Patterns (Torig = {t1,t2,...,tn})
produced by Algorithm 1
Output: Improved Test Patterns (Thamm)

1: Initialize Thamm = {}

2: Initialize previous test t, as a vector of all 0’s
3: while T4 is not empty do

4 Mmingist = tnt_max

5: bestidm =-1

6 for all remaining tests t; in Torig do

7 if mingise > hamming_dist(t,,t;) then
8 mingise = hamming_dist(tp,t;)

9

bestidz =]
10: end
11: end
12: Add tpest,,, to the end of Thamm
13: Remove tpest,,, from Torig
14: Update t, = tpest,; .,
15: end

16: return Thamm

Algorithm 3: TESTS REORDERING BY SIMULATION
(MERS-s)
Input: List of Test Patterns (Tom-g = {t17t2,
produced by Algorithm 1
Output: Improved Test Patterns (Tsim)

ytn})

1: Initialize Toim = {}

2: Initialize previous test ¢, as a vector of all 0’s
3: while Tyrig is not empty do

4: max, = int_min

5: bestidz = -1

6: for all remaining tests t; in Torig do

7: Simulate the circuit with vector pair (t,, ¢;)
8: Count the number of RareSwitch and

TotalSwitch

9: profit = C x RareSwitch — Total Switch
10 if maz, < profit then
11: maxp = profit
12: bestigze = j
13: end

14: end

15: Add tpest,;,, to the end of Teim

16: Remove tyest;y, from Torig

17: Update t, = tpest,; .,

18: end

19: return Ts;m

4.3 Simulation based Reordering

The reordering problem to improve the relative switching
is actually a multi-objective optimization problem: maxi-
mize the DeltaSwitch and minimize the TotalSwitch as in
Equation 1. We do not know the DeltaSwitch, because
the location and type of the Trojan is unknown. However,
rare switching between two vectors is a good indicator for
DeltaSwitch, which means a large number of rare switching
would imply a large DeltaSwitch in Trojan. We redefine
the optimization goal as to maximize the rare switching and

minimize the total switching at the same time between vec-
tor pairs. We formalize the problem as shown in Equation
2. We need to explore the best weights to balance between
the two objectives:

maximize (w1 * RareSwitch — wa x TotalSwitch) (2)

We propose an approach as shown in Algorithm 3 based
on real simulation of the test vectors to maximize the com-
bined objective. We introduce a concept of profit to indi-
cate the fitness of a test vector to follow the previous test
vector. profit is defined as (C'* RareSwitch—Total Switch),
where C' is the ratio of two weights w1 and wsz. It is meant
to maximize the rare switching (activity in Trojan circuits)
and minimize the total switching of the whole circuit. In
the experiment section, we will explore different weight ra-
tios and check the influence of weight ratios on side channel
sensitivity.

Algorithm 3 shows our approach to tune the testset by
simulation with profit as a reordering criterion. By ex-
haustively checking the profit between the previous vector
and all the remaining vectors, we select the vector which
has the maximum profit as the next following vector. The
time complexity of Algorithm 3 is O(n?), where n is the
test length. However, it is much slower than Algorithm 2,
because it is time-consuming to simulate input vector pairs
and calculate profit.

Input: circuit netlist, N, C,
rare threshold, # of Trojan Inst.

l

Random simulation to find internal
nodes with low probability

----------------------- % List of Rare Nodes (RD
Y

Generate random Trojan samples
with triggers from rare nodes

----------------------- > List of Trojan Samples>
A 4

Generate MERS test patterns
(Algorithm 1)

Improve MERS tests using
MERS-h and MERS-s
(Algorithm 2 and 3)

_______________________ ») Optimized Test Patterns
{Thamm}; {Tsim}
v

Evaluate Side Channel Sensitivity
for optimized patterns

Figure 3: Test generation framework for side-channel anal-
ysis based Trojan detection.

5. EXPERIMENTS

5.1 Experimental setup

The test generation framework, including the MERS core
algorithms and the evaluation framework, is implemented
using C. As shown in Fig. 3, the test generation framework

can simulate circuit netlists, generate MERS testset, further
tune the testset, and evaluate the effectiveness of testsets on
random Trojans. We evaluated our approach on a subset
of ISCAS-85 and ISCAS-89 benchmark circuits. The se-
quential circuits are converted into full scan mode. We also
implemented the MERO [5] approach with parameter N of
1000 for comparison. We did our experiments on a server
with AMD Opteron Processor 6378 (2.4GHz). The runtime
for different benchmarks and different methods is shown in
Table 1. The table also shows the number of rare nodes in
each benchmark. We used 0.1 as the rare threshold to select
rare nodes.

Table 1: Runtime for MERS test generation, reordering us-
ing hamming and reordering using simulation, with N=1000,
rare threshold = 0.1

Benchmark Nodes Run-time (s)
(rare / total) [MERS | MERS-h reordering | MERS-s reordering
2670 63 / 1010 13370.86 7.24 4925.23
3540 331 /1184 6097.51 9.43 18166.94
ch315 255 / 2485 45595.97 11.04 39073.81
6288 45 / 2448 4154.62 0.31 2802.85
c7552 306 / 3720 81405.89 25.2 63502.19
513207 592 / 2504 12511.95 365.02 29064.72
515850 679 / 3004 19903.44 728.14 38181.49
535932 896 / 6500 7295.74 39.53 31201.04

5.2 [Evaluation Criteria

When applying a testset to a circuit with Trojan, there
are four criteria to evaluate the effectiveness of the testset:

e AvgDeltaSwitch: the average delta switch when ap-
plying the testset on this Trojan-infected circuit.

e MaxDeltaSwitch: the maximum delta switch when
applying the testset.

o AvgRelativeSwitch: the average relative switch when
applying the testset.

o MaxRelativeSwitch: the maximum relative switch
when applying the testset. We choose this criterion as
the Side Channel Sensitivity because this directly
determines whether a Trojan can be detected through
side-channel analysis.

AwvgDeltaSwitch and MaxDeltaSwitch reflect the activity in
Trojan, and AwvgRelativeSwitch as MaxRelativeSwitch reflect
the sensitivity of the side channel signal in detecting the
Trojan.

As for evaluation of testsets, we would expect a high-
quality testset to have a good coverage over all possible Tro-
jans. In our experiments, we apply the testset to 1000 ran-
domly inserted Trojan samples and compute these four val-
ues for each Trojan instance. We would then take the aver-
age of these four metrics, which would reflect the capability
of the testset to enable detection of different Trojans through
side-channel analysis. The average M ax RelativeSwitch would
be most suitable for Side Channel Sensitivity evaluation,
which is to maximize the sensitivity for an arbitrary Trojan
in unknown circuit location.

5.3 Exploration of N

Fig. 4 shows the distribution of MaxDeltaSwitch over
1000 random 8-trigger Trojan samples for two ISCAS-85

€2670: Distribution of Max Delta Switch

HH

N
5

—_

1
1

L]

B

N
o

—_

H

—_

=
L

i

Max Delta Switch
- [
» o

DN]

—_

—_

=
o

]
[l
! —_
]

.
Rand

N=10 N=20 N=50 N=100 N=200 N=500 N=1000

(a) ¢2670: Distribution of MaxDeltaSwitch over 1000 random sam-

ples of 8-trigger Trojans.

16 ¢3540: Distribution of Max DTeIta Switch

1
- ' -_ _
' ' ' '
1 ' 1
14 LT
' ' 1 ' 1
- T ' ' ' : '
1 1
128 | ! ! ! ! 1
=} ' '
5 1 ' 1
1 ' 1
n '] '
S10f g
] ' 1
Q ' '
P ' ' : :
8l 1 1
= ' ' ' ' ! ! . N
1] 1 1 ! ! —_ —_
'] ' ' : :
6 | ' . . —_ _
'] ' '
- - —_ —_
4 Rand N=10 N=20 N=50 N=100 N=200 N=500 N=1000

(b) ¢3540: Distribution of MaxDeltaSwitch over 1000 random sam-

ples of 8-trigger Trojans.

Figure 4: Impact of N (number of times that a rare node
have rare switching) on MaxDeltaSwitch for benchmarks (a)
¢2670 and (b) ¢3540.

benchmarks. We choose different NV to generate MERS test-
sets, to compare with the Random (10K vectors) testset. For
each testset, the box plot shows (minimum, first quartile,
median, third quartile, maximum) values of MaxDeltaSwitch
of the 1000 Trojan samples. It is clear from these plots that
the distribution of MaxDeltaSwitch is constantly improving
with increasing N. For ¢2670, the average MaxDeltaSwitch
(as shown by the red lines) can reach 18.67 for MERS (N =
1000), while Random testset can achieve only 12.15. For
¢3540, the average MaxDeltaSwitch can reach 11.13 for MERS
(N = 1000), while for Random testset it is only 9.19. The
fact that the quality of MERS tests improves with increasing
N is not surprising. It is similar to N-detect tests for stuck-
at faults, where fault coverage is expected to improve with
increasing N. The testset size also increases with N. The
sizes of testsets for MERS (N = 10, 20, 50, 100, 200, 500,
1000) are (71, 140, 347, 656, 1262, 3142, 6199) for ¢2670,
and (161, 302, 742, 1441, 2858, 7070, 14250) for ¢3540. In
most of our experiments, we choose a value of N = 1000,
which is a good balance between testset quality and testset
size. For fair comparison with Random testset, we will only
take the first 10K vectors of MERS testset if it is larger than
10K.

c2670

—=— Avg MaxDeltaSwitch —&— Avg TotalSwitch

20 660

17.5 620
s
H

v 15 580
=
3

12.5 540

10 500

@AY a8 o 0 o0 Al oo
(s) Z a Z N . P
@a‘\ﬁ A\S W W W \A”L ‘Aj:’ \&’I\Q
(a)
c3540
—=— Avg MaxDeltaSwitch —A— Avg TotalSwitch

12 840

1 780
s
E

@« 10 720
=
&

9 660

8 600

© AY A P o o N oo
0' z z z =N 2 2
??‘\6 W W W W ‘\11' ‘\)’3 ‘\4’\0

(b)

Figure 5: MaxDeltaSwitch versus TotalSwitch for different
N for benchmarks (a) ¢2670 and (b) ¢3540. MERS creates
more switching in Trojan, as well as more switching in other
parts of the circuit (which results in increased total switch-

ing).

5.4 Effect of Increased Total Switching

Fig. 5 shows the average MaxDeltaSwitch and the av-
erage TotalSwitch of the testsets for 1000 8-trigger Tro-
jan samples for different values of N. For both of the two
benchmarks, the average TotalSwitch increases with N as
well as the average MaxDeltaSwitch. It is obvious that all
the MERS testsets have much larger average TotalSwitch,
compared with the Random testset. For ¢2670, the aver-
age TotalSwitch for MERS (N = 1000) is 644.9, which is
about 1.25X times of that of the Random testset (515.7).
For ¢3540, the average TotalSwitch for MERS (N = 1000)
is 808, while Random testset is only 649.2. The insight that
we can get from here is that MERS tends to increase the
TotalSwitch of the circuit, although it is designed to in-
crease switches in rare nodes. The following subsection will
show that the proposed reordering methods would be effec-
tive to reduce TotalSwitch and thus increase side channel
sensitivity.

5.5 Effect of Weight Ratio (C)

The effectiveness of the two reordering methods can be ob-
served in Fig. 6 and Fig. 7. As shown in Fig. 6, MERS-h can
reduce Total Switch and thus increase the relative switching

Total Switch

Total Switch

c2670

—#— Avg SideChannelSensitivity = —&— Avg TotalSwitch

0.04 720
=
£ 0.035 640
2
(7]
Q
£ 0.03 560
-]
g
& 0.025 430
so
0.02 400
PP C IO S . N - SN N N IR\
@6@0 ‘3&?‘“@@5 & A A
(a)
c3540
—#— Avg SideChannelSensitivity = —— Avg TotalSwitch
0.16 1000
L~
g 012 750
H
[
Q
S 0.08 500
-]
&
X
L
s 0.04 250
0 0
© @B 0 A S S A a0 O
?@“60 ﬁ‘g@‘!@@% T At A

Figure 6: Side Channel Sensitivity versus TotalSwitch for
Random, the original MERS, MERS-h and MERS-s (with
different C') for benchmarks (a) ¢2670 and (b) ¢3540. Both
MERS-h and MERS-s (with a small C) are effective in re-
ducing the total switching.

(i.e. the Side Channel Sensitivity), compared with the orig-
inal MERS testset. For MERS-s with different weight ratio
C, side channel sensitivity improves steadily with a small C,
and then goes down when C is too large. As the weight ra-
tio tries to balance DeltaSwitch and TotalSwitch, a large C'
will outweigh the influence of TotalSwitch, which will make
it less different from the original MERS testset. In the fol-
lowing experiments, we choose the weight ratio as C' = 5, as
it provides a good balance between the total switching and
rare switching.

Fig. 7 shows detailed distribution of Side Channel Sensi-
tivity for 1000 8-trigger Trojan samples with different choices
of C. The reordering methods are working well to improve
Side Channel Sensitivity, which is built on the fact that the
original MERS testset is already of high quality in terms of
DeltaSwitch, or switching in Trojans.

5.6 Increase in Trojan Activity

Table 2 shows that MERS (N=1000) is very effective in
creating DeltaSwitch caused by arbitrary Trojans due to its
statistical nature. The average Maz Delta Switch increases
by 31.11% and the average Avg Delta Switch by 187.33% on
average for different benchmarks, compared with Random

Total Switch

Total Switch

c2670: Distribution of Side Channel Sensitivity

0.06
. ; !
- ' ' ! '
0.05 : i , ' !
. h : ! -
P ' i ' ' : T
| ' | | —
£ i :)
Sooal T 0T ' ! T
o ' [[]
% : : B :
& ' ! I
Zo.03f ! E ! , : i i j EI El
x ' ' . ' ' ' H
[} 1 1 1 1 |] |]
= : T ! ' .
l - L}
0.02 - - =
Ll
H
.
Ll
0.01l-=—

Rand MERS MERS-h C=1 C=2 C=5 C=10 C=20 C=50 C=100

(a) ¢2670: Distribution of Side Channel Sensitivity over 1000 random

samples of 8-trigger Trojans.

c3540: Distribution of Side Channel Sensitivity

0.30

Max Relative Switch
(=]
-
[T}

e
)
o

HH
HH
Ht

0.00 C=20 C=50 C=100

(b) ¢3540: Distribution of Side Channel Sensitivity over 1000 random

samples of 8-trigger Trojans.

Figure 7: Distribution of Side Channel Sensitivity for Ran-
dom, the original MERS, MERS-h and MERS-s (with dif-
ferent C) for benchmarks (a) c2670 and (b) ¢3540.

testset. This shows the effectiveness of MERS in creating
Trojan activity.

Table 3 shows that MERS is also helpful in improving
RelativeSwitch. The average AvgRelativeSwitch increased
by 158.16%, compared with Random testsets. For average
MaxRelativeSwitch (Side Channel Sensitivity), MERS has
an average improvement of 18.89%. However, Side Channel
Sensitivity values for benchmark ¢3540 and c6288 are not
as good as those of Random testsets. This is due to the
fact that MERS testset also increases the total switching,
when it is making efforts to cause rare nodes switching. This
phenomenon is illustrated and explained in Fig. 5 and Fig.
6, and this side effect can be improved by the two reordering
algorithms as shown in Table 4 and 5.

5.7 Side Channel Sensitivity Improvement

To this point, we have explored the parameters: N for
MERS and C for MERS-s. We choose N = 1000 and
C = 5 in the following experiment to compare our pro-
posed schemes with Random testset and MEROQO. Table 4
and 5 show the improvement of proposed approaches on Side
Channel Sensitivity for 4-trigger and 8-trigger Trojans.

Table 4 shows that MERS, MERS-h and MERS-s have
10.37%, 138.44% and 152.26% improvement over the Ran-

Table 2: Comparison of MERS (N=1000) with Random (10K) for average MaxDeltaSwitch and average AvgDeltaSwitch,

over 1000 random samples of 8-trigger Trojans.

Benchmark |_2verage MaxDeltaSwitch | average AvgDeltaSwitch
Random | MERS | Improve. | Random | MERS | Improve.

c2670 12.15 18.67 53.67% 1.4289 | 6.8561 | 379.83%
c3540 9.19 11.13 21.16% 1.3716 | 2.9058 | 111.85%
c5315 9.51 13.80 45.16% 1.3116 | 3.9300 | 199.64%
c6288 6.63 7.26 9.63% 1.0636 | 4.8448 | 355.50%
c7552 8.53 12.00 40.76% 1.3488 | 2.7700 | 105.36%
513207 6.63 8.83 33.18% 0.6428 | 0.9771 | 52.01%
515850 7.53 10.84 43.99% 0.7465 | 1.3609 | 82.29%
$35932 15.16 15.37 1.35% 2.1803 | 6.8060 | 212.16%
Avg. Improve. - - 31.11% - — 187.33%

Table 3: Comparison of MERS (N=1000) with Random (10K) for average MaxzRelativeSwitch (Side Channel Sensitivity)
and average AvgRelativeSwitch, over 1000 random samples of 8-trigger Trojans.

average MaxRelatlv?S.vv.ltch average AvgRelativeSwitch
Benchmark (Side Channel Sensitivity)
Random | MERS | Improvement | Random | MERS | Improvement
c2670 0.02469 | 0.03108 25.90% 0.00255 | 0.01054 314.14%
c3540 0.02670 | 0.01933 -27.59% 0.00214 | 0.00361 69.12%
c5315 0.00526 | 0.00766 45.72% 0.00075 | 0.00200 165.65%
c6288 0.00534 | 0.00395 -26.06% 0.00059 | 0.00219 270.68%
c7552 0.00452 | 0.00852 88.48% 0.00058 | 0.00113 94.65%
s13207 0.00756 | 0.00844 11.64% 0.00066 | 0.00085 28.22%
s15850 0.00593 | 0.00716 20.70% 0.00053 | 0.00082 54.25%
s35932 0.00523 | 0.00587 12.29% 0.00060 | 0.00223 268.54%
Avg. Improve. - - 18.89% - - 158.16%

dom testsets, respectively. While the original MERS testsets
is 23.95% worse than MERO testsets, MERS-h and MERS-
s have 52.62% and 62.01% improvement over MERO. Ta-
ble 5 shows the results for 8-trigger Trojans. Compared
to Random testsets, MERS, MERS-h and MERS-s can have
18.89%, 107.53% and 96.61% improvement, respectively. The
original MERS testsets is 12.43% worse than MERO test-
sets. MERS-h and MERS-s testsets can improve the Side
Channel Sensitivity by 40.79% and 38.50%, respectively.

In this section, we explore the impact of different values
of N for MERS and observe the effectiveness of MERS to
maximize Trojan activity as IV increases. We confirm the su-
periority of MERS testsets over Random testsets in Section
5.6 on creating switching activity in randomly sampled Tro-
jans. We observed that the total switching was also likely to
increase while MERS made efforts to maximize rare switch-
ing in Trojans. The two reordering methods (MERS-h and
MERS-s) successfully had the total switching under control
while maintaining the rare switching high. The comparison
with Random and MERO testsets shows the effectiveness of
our test generation framework in maximizing Side Channel
Sensitivity for Trojan detection.

5.8 Process Calibration and Multiple-Parameter

Side-Channel Analysis

MERS can be combined with existing process calibration

approaches [21][22]]23] to minimize the false positives/negatives

and maximize Trojan coverage. Most side-channel analysis
based approaches perform process variation calibration by
using golden chips at different process corners. This helps us

obtain the limiting threshold values, beyond which any chip
is classified as Trojan-infected. MERS can simultaneously
maximize the switching in Trojan and minimize the back-
ground switching, so as to maximize the relative switching.
By calibration or reference to that of a golden chip, MERS
helps side channel analysis to reduce the intra-die systematic
process variations. Moreover, as shown in [23], various mea-
surable parameters can be used for multiple-parameter side-
channel-based Trojan detection where at least one parame-
ter is affected by the Trojan and other parameters are used
to calibrate the process noise. For example, the dynamic
current (Ippr), the quiescent or leakage current (Ippg) and
the maximum operating frequency (Fmaz) may be influenced
when there is a Trojan. They can serve as side channel refer-
ences to calibrate process noise. Authors in [23] have shown
Trojan and process variation effects on these three vari-
ables (Ippr, Ippg and Fpez). MERS can increase Ippr,
which would greatly improve the accuracy of [23] to isolate
a Trojan-infected chip in the multiple-parameter space from
process induced variations.

5.9 Scalability to Large Designs

For a large design, the supply current of a golden chip
for a high-activity vector can be very large compared to the
additional current consumed by a small Trojan. The vari-
ation in the current value due to process noise can also be
very large, which would mask the effect of the Trojan on
the measured current and create difficulty for accurate Tro-
jan detection. Scalability of MERS to larger designs can be
enhanced by combining it with region-based test generation

Table 4: Comparison of average Side Channel Sensitivity between Random (10K), MERO,
C=5 for MERS-s, over 1000 random samples of 4-trigger Trojans.

and MERS testsets, N=1000,

Comparison Proposed Improvement Improvement

Benchmark Testsets Schemes to Random to MERO
Random | MERO | MERS | MERS-h | MERS-s | MERS | MERS-h | MERS-s | MERS | MERS-h | MERS-s
c2670 0.01703 | 0.02571 | 0.02231 | 0.03035 | 0.03308 | 31.01% | 78.27% 94.31% | -13.23% | 18.07% 28.69%
c3540 0.02144 | 0.04238 | 0.01336 | 0.10677 | 0.11067 | -37.71% | 397.97% | 416.16% | -68.48% | 151.96% | 161.16%
c5315 0.00445 | 0.01082 | 0.00747 | 0.01287 | 0.01586 | 67.79% | 188.97% | 256.29% | -30.97% | 18.89% 46.59%
c6288 0.00480 | 0.00395 | 0.00313 | 0.00741 | 0.00896 | -34.81% | 54.47% 86.85% | -20.88% | 87.50% | 126.80%
c7552 0.00351 | 0.00737 | 0.00491 | 0.01250 | 0.01168 | 39.61% | 255.63% | 232.38% | -33.46% | 69.50% 58.42%
s13207 0.00568 | 0.00617 | 0.00619 | 0.00773 | 0.00826 9.07% 36.24% 45.49% 0.31% 25.29% 33.80%
$15850 0.00447 | 0.00487 | 0.00474 | 0.00691 | 0.00634 6.14% 54.83% 42.06% | -2.75% 41.86% 30.17%
$35932 0.00354 | 0.00463 | 0.00361 | 0.00500 | 0.00512 1.89% 41.17% 44.53% | -22.12% 7.90% 10.48%
Avg. Improve. - - - - - 10.37% | 138.44% | 152.26% | -23.95% | 52.62% 62.01%

Table 5: Comparison of average Side Channel Sensitivity between Random (10K), MERO,

C=5 for MERS-s, over 1000 random samples of 8-trigger Trojans.

and MERS testsets, N=1000,

Comparison Proposed Improvement Improvement

Benchmark testsets Schemes to Random to MERO
Random | MERO | MERS | MERS-h | MERS-s | MERS | MERS-h | MERS-s | MERS | MERS-h | MERS-s
c2670 0.02469 | 0.03204 | 0.03108 | 0.03729 | 0.03984 | 25.90% | 51.05% 61.40% | -3.01% 16.37% 24.35%
¢3540 0.02670 | 0.05532 | 0.01933 | 0.11974 | 0.10037 | -27.59% | 348.53% | 275.96% | -65.05% | 116.47% | 81.44%
c5315 0.00526 | 0.00875 | 0.00766 | 0.01020 | 0.01129 | 45.72% | 94.03% | 114.78% | -12.38% | 16.66% 29.14%
c6288 0.00534 | 0.00412 | 0.00395 | 0.00649 | 0.00790 | -26.06% | 21.55% 47.97% | -4.20% 57.49% 91.72%
c7552 0.00452 | 0.00914 | 0.00852 | 0.01437 | 0.01149 | 88.48% | 217.78% | 154.00% | -6.70% 57.31% 25.74%
513207 0.00756 | 0.00838 | 0.00844 | 0.01053 | 0.01112 | 11.64% | 39.24% 47.05% 0.69% 25.58% 32.63%
515850 0.00593 | 0.00722 | 0.00716 | 0.00923 | 0.00818 | 20.70% | 55.69% 37.94% | -0.87% 27.86% 13.28%
535932 0.00523 | 0.00638 | 0.00587 | 0.00692 | 0.00700 | 12.29% | 32.39% 33.80% | -7.90% 8.58% 9.74%
Avg. Improve. 18.89% | 107.53% | 96.61% | -12.43% | 40.79% 38.50%

approaches, which segment a circuit into nearly-isolated re-
gions (i.e. with low connectivity between them). In this
case, MERS can be applied separately to each region. For
example, in case of a processor, MERS can be employed
separately to its building blocks, such as, integer execution
unit, floating point datapaths, control logic, and result bus
logic. MERS can work with schemes proposed in [23] to iso-
late a region and prevent unwanted switching in independent
functional modules by taking advantage of the power gating
techniques conventionally used by low-power designs, such
as clock gating, supply gating, or operand isolation. MERS
can also be applied a more flexible region-based side channel
analysis approach proposed in [24]. They perform a func-
tional decomposition to divide a large design into several
small blocks or regions, so that they can activate them one
region at a time. MERS can be used as the test genera-
tion algorithm to generate vectors that maximize the ac-
tivity within each region. The decision to report a chip as
Trojan-infected would be based on the deviation of its region
current matrix with respect to the golden chip. Future work
will include integration of MERS with region-based circuit
partitioning techniques to further enhance its effectiveness
and its evaluation on larger industry-standard designs.

6. CONCLUSIONS

We have presented a framework for statistical test gen-
eration, called MERS, which can significantly improve the
Trojan detection sensitivity in side-channel analysis based
Trojan detection. The approach aims at statistically increas-
ing switching activity in an unknown Trojan to amplify the
Trojan effect in presence of large process variations. Such

a test generation approach will, in general, be effective for
any side-channel analysis approaches that rely on activity
in Trojan circuits (e.g. transient current, dynamic power
profile, or electromagnetic emanation based methods). Fur-
thermore, MERS is effective for any Trojan forms/sizes, as
long as a Trojan is implanted through alterations in a circuit
structure - the most dominant mode of Trojan implantation.
Our simulation results on a set of benchmark circuits show
that the proposed approach can improve the side channel
sensitivity by more than 96.61%, compared with random
tests for a large set of arbitrary Trojans. It shows that a
judicious statistical test generation such as MERS can serve
as an essential component in a side-channel Trojan detection
approach. Future work will include further improvement in
scalability to larger designs and evaluation of MERS with
test chip measurements.

7. ACKNOWLEDGMENTS

This work was partially supported by grants from Na-
tional Science Foundation (1441667, 1603475, 1603483), Semi-
conductor Research Corporation (2014-TS-2554) and Cisco
Systems (F020375). Any opinions, findings, conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the
funding agencies.

8. REFERENCES

[1] R. Chakraborty, S. Narasimhan and S. Bhunia.
Hardware Trojan: Threats and emerging solutions.
IEEE International High-Level Design Validation and
Test Workshop (HLDVT), 2009.

[2] DARPA: TRUST in Integrated Circuits (TIC), 2007.
[Online]. Available: http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA503809

R. Chakraborty and S. Bhunia. Security against

hardware Trojan through a novel application of design

obfuscation. ACM International Conference on

Computer-Aided Design (ICCAD), pp. 113-116, 2009.

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A.

Keshavarzi and V. De. Parameter variations and impact

on circuits and microarchitecture. ACM/IEEE Design

Automation Conference (DAC), pp. 338-342, 2003.

R. Chakraborty, F. Wolff, S. Paul, C. Papachristou and

S. Bhunia. MERO: A Statistical Approach for

Hardware Trojan Detection. International Workshop on

Cryptographic Hardware and Embedded Systems

(CHES), pp. 396-410, 2009.

[6] S. Saha, R. Chakraborty, S. Nuthakki, Anshul, and D.

Mukhopadhyay. Improved Test Pattern Generation for

Hardware Trojan Detection Using Genetic Algorithm

and Boolean Satisfiability. International Workshop on

Cryptographic Hardware and Embedded Systems

(CHES), pp. 577-596 (2015).

Y. Jin and Y. Makris. Hardware Trojan detection using

path delay fingerprint. IEEE International Symposium

on Hardware Oriented Security and Trust (HOST),

2008.

[8] M. Banga and M. Hsiao. A region based approach for
the identification of hardware Trojans. IEEE
International Workshop on Hardware-Oriented Security
and Trust (HOST), 2008.

[9] M. Banga, M. Chandrasekar, L. Fang and M. Hsiao.
Guided test generation for isolation and detection of
embedded Trojans in ICs. ACM Great Lakes
Symposium on VLSI (GLSVLSI), pp. 363-366, 2008.

[10] Y. Jin and Y. Makris. Hardware Trojan detection
using path delay fingerprint. IEEE International
Workshop on Hardware-Oriented Security and Trust
(HOST), 2008.

[11] S. Wei and M. Potkonjak. Scalable hardware Trojan
diagnosis. IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), 20(6), pp. 1049-1057,
2012.

[12] R. Rad, J. Plusquellic and M. Tehranipoor. A
sensitivity analysis of power signal methods for
detecting hardware Trojans under real process and
environmental conditions. IEEE Transactions on Very
Large Scale Integration Systems (TVLSI), 18(12), pp.
1735-1744, 2010.

[13] H. Salmani and M. Tehranipoor. Layout-Aware
Switching Activity Localization to Enhance Hardware
Trojan Detection. IEEE Transactions on Information
Forensics and Security, 7(1), pp. 76-87, 2012.

[3

4

[5

[7

[14] S. Dupuis, P. Ba, G. Natale, M. Flottes, and B.
Rouzeyre. A novel hardware logic encryption technique
for thwarting illegal overproduction and Hardware
Trojans. IEEE 20th International On-Line Testing
Symposium (IOLTS), pp. 49-54, 2014.

[15] J. Rajendran, Y. Pino, O. Sinanoglu and R. Karri.
Security analysis of logic obfuscation. ACM/IEEE
Design Automation Conference, pp. 83-89, 2012.

[16] S. Shekarian, M. Zamani and S. Alami. Neutralizing a
design-for-hardware trust technique. International
Symposium on Computer Architecture and Digital
Systems (CADS), pp. 73-78, 2013.

[17] X. Mingfu, H. Aiqun and L. Guyue: Detecting
Hardware Trojan through Heuristic Partition and
Activity Driven Test Pattern Generation.
Communications Security Conference (CSC), pp. 1-6,
2014.

[18] H. Salmani, M. Tehranipoor and J. Plusquellic. A
novel technique for improving hardware Trojan
detection and reducing Trojan activation time. IEEE
Transactions on Very Large Scale Integration Systems
(TVLSI), 20(1), pp. 112-125, 2012.

[19] B. Zhou, W. Zhang, S. Thambipillai, and J. Teo. A
low cost acceleration method for hardware Trojan
detection based on fan-out cone analysis. ACM
International Conference on Hardware Software
Codesign and System Synthesis, p. 28, 2014.

[20] I. Pomeranz and S. Reddy. A measure of quality for
n-detection test sets. IEEE Transactions on Computers,
53(11), pp. 1497-1503, 2004.

[21] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi
and B. Sunar. Trojan Detection using IC
Fingerprinting. IEEE Symposium on Security and
Privacy, pp. 296-310, 2007.

[22] X. Wang, H. Salmani, M. Tehranipoor and J.
Plusquellic. Hardware Trojan Detection and Isolation
Using Current Integration and Localized Current
Analysis. IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, pp. 87-95, 2008.

[23] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F.
Wolff, C. Papachristou, K. Roy and S. Bhunia.
Hardware Trojan detection by multiple-parameter
side-channel analysis. IEEE Transactions on
Computers, 62(11), pp. 2183-2195, 2013.

[24] D. Du, S. Narasimhan, R. Chakraborty and S.
Bhunia. Self-referencing: a scalable side-channel
approach for hardware trojan detection. International
Workshop on Cryptographic Hardware and Embedded
Systems (CHES), pp. 173-187, 2010.

